Rederiving the Upper Bound for Halving Edges using Cardano's Formula

نویسندگان

  • Pintu Chauhan
  • Manjish Pal
  • Napendra Solanki
چکیده

In this paper we rederive an old upper bound on the number of halving edges present in the halving graph of an arbitrary set of n points in 2-dimensions which are placed in general position. We provide a different analysis of an identity discovered by Andrejak et al, to rederive this upper bound of O(n). In the original paper of Andrejak et al. the proof is based on a naive analysis whereas in this paper we obtain the same upper bound by tightening the analysis thereby opening a new door to derive these upper bounds using the identity. Our analysis is based on a result of Cardano for finding the roots of a cubic equation. We believe that our technique has the potential to derive improved bounds on the number of halving edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Edge Cut Sets and an Upper bound for Edge Tenacity of Organic Compounds CnH2n+2

The graphs play an important role in our daily life. For example, the urban transport network can be represented by a graph, as the intersections are the vertices and the streets are the edges of the graph. Suppose that some edges of the graph are removed, the question arises, how damaged the graph is. There are some criteria for measuring the vulnerability of graph; the...

متن کامل

Geometric Dilation and Halving Distance

Let G be a geometric graph in the plane whose edges may be curves. For two arbitrary points on its edges, we can compare the length of the shortest path in G connecting them against their Euclidean distance. The supremum of all these ratios is called the geometric dilation of G. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given...

متن کامل

Geometric dilation and halving distance

Let G be a geometric graph in the plane whose edges may be curves. For two arbitrary points on its edges, we can compare the length of the shortest path in G connecting them against their Euclidean distance. The supremum of all these ratios is called the geometric dilation of G. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given...

متن کامل

Halving Point Sets

Given n points in R d , a hyperplane is called halving if it has at most bn=2c points on either side. How many partitions of a point set (into the points on one side, on the hyperplane, and on the other side) by halving hyperplanes can be realized by an n-point set in R d ? Consider the following algorithmic problem rst. Given n points in R d , we want to nd a hyperplane that minimizes the sum ...

متن کامل

On the harmonic index and harmonic polynomial of Caterpillars with diameter four

The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03730  شماره 

صفحات  -

تاریخ انتشار 2018